
1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2924372, IEEE
Transactions on Services Computing

1

Achieve Efficient and Verifiable Conjunctive and
Fuzzy Queries over Encrypted Data in Cloud

Jun Shao, Rongxing Lu, Senior Member, IEEE, Yunguo Guan, and Guiyi Wei

Abstract—Due to the high demands of searchability over
encrypted data, searchable encryption (SE) has recently received
considerable attention and been widely suggested in encrypted
cloud storage. Typically, the cloud server is assumed to be honest-
but-curious in most SE-based cloud storage systems, i.e., the
cloud server should follow the protocol to return valid and
complete search results to users. However, this trust assumption
is not always true due to some unanticipated situations, such as
misconfigurations and malfunctions. Therefore, the function of
verifiability of search results becomes crucial for the success of
SE-based cloud storage systems. For this reason, many verifiable
SE schemes have been proposed; however, they either fail to
support query operators “OR”, “AND”, “∗” and “?” simulta-
neously, or require many time-consuming operations. Aiming
at addressing this problem, in this paper, we propose a new
verifiable SE scheme for encrypted cloud storage. The proposed
scheme is characterized by integrating various techniques, i.e.,
bitmap index, radix tree, format preserving encryption, keyed-
hash message authentication code and symmetric key encryption,
for achieving efficient and verifiable conjunctive and fuzzy
queries over encrypted data in the cloud. Detailed security
analysis shows that our proposed scheme holds the confidentiality
of data and verifiability of search results at the same time. In
addition, extensive experiments are conducted, and the results
demonstrate our proposed scheme is efficient and suitable for
users to retrieve their data from the cloud to their mobile devices.

Index Terms—Cloud Storage, Verifiable Searchability, Search-
able Encryption, Conjunctive Query, Fuzzy Query

I. INTRODUCTION

Cloud storage has nowadays become one of the most
popular data storage solutions, where users can outsource their
data to the cloud server for the low cost and convenient access.
According to the report from Research and Markets [1], cloud
storage market in 2017 is US$25.171 billion, and it will reach
US$92.488 billion by 2022 at a compound annual growth
rate of 29.73% from 2017 to 2022. However, the privacy and
security issues are still the main challenges concerned in cloud
storage. The cloud storage data breaches happened from time
to time due to attacks, malfunctions or misconfigurations, such
as Apple iCloud celebrity leak [2], Dropbox password leak [3]
and medical data leak on Amazon [4]. In this case, it would
be wise to encrypt the data before uploading them to the cloud

J. Shao, Y. Guan, and G. Wei are with the Department of Information
Security, Zhejiang Gongshang University, Hangzhou 310018, China. E-mail:
chn.junshao@gmail.com

R. Lu and J. Shao are with the Faculty of Computer Science, University
of New Brunswick, Fredericton, Canada E3B 5A3. E-mail: rlu1@unb.ca

This work was supported by the Natural Science Foundation of Zhejiang
Province [grant number LZ18F020003], the National Natural Science Foun-
dation of China [grant number U1709217], and CSC Scholarship.

server. Meanwhile, in order to efficiently retrieve the data on
demand, an encrypted index should be associated with the
underlying encryption scheme, which results in the so-called
searchable encryption (SE). In most SE-based cloud storage
systems [5], [6], the cloud server is assumed to be honest-
but-curious. That is, the cloud server would exactly follow
the specific protocol. Under this trust assumption, everything
goes well. For example, the user issues (encrypted) search
query to the cloud server, and the latter will return the valid
and complete search results to the user. However, this trust
assumption is not always true in reality. In other words, the
cloud server would return an invalid or incomplete search
result to the user, due to the missing of the data [7], [8] or
monetary reasons. In this regard, the verifiability of the search
result in the cloud storage becomes a requirement.

Chai and Gong [9] firstly investigated the verifiability prob-
lem in searchable encryption. Since then, many research efforts
have been dedicated to design verifiable SE in symmetric key
setting [10]–[15] or public key setting [16]–[22]. However,
almost all existing verifiable SE schemes suffer from at least
one of the following disadvantages: i) some schemes lack the
functionality simultaneously supporting query operators “OR”,
“AND”, “∗” and “?”, which are considered as the basic search-
ability of the traditional database system; ii) other schemes
supporting the above four kinds of query operators usually
require some time-consuming operations, such as bilinear
maps, which is against the trend that the resource-constrained
devices, such as smart phones, are becoming the main devices
for people to access internet [23].

In this paper, aiming at solving the above challenges,
we would like to propose an efficient verifiable SE scheme
supporting query operators “OR”, “AND”, “∗” and “?” simulta-
neously. The proposed scheme is characterized by employing
techniques bitmap index [24] and radix tree [25] to support
query operators “AND”, and “∗” and “?”. In addition, to
provide the function of verifiability, the proposed scheme also
applies keyed-hash message authentication code (HMAC) [26]
to guarantee the integrity and authentication, and the format
preserving encryption (FPE) [27], [28] for constructing the
encrypted radix tree. Specifically, the main contributions of
this paper are three-fold.
• By uniquely integrating the bitmap index, radix tree, FPE,

and HMAC, we propose a new verifiable SE scheme that
simultaneously supports query operators “OR”, “AND”, “∗”
and “?”.

• Our proposed scheme is also efficient in terms of com-
putational cost. In particular, the most time-consuming
operations in our proposal are just the computations of

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2924372, IEEE
Transactions on Services Computing

2

hash function and symmetric key encryption, which are
usually considered as lightweight operations.

• We also implement a prototype to evaluate our proposed
scheme, and the results demonstrate our proposed scheme
is efficient in search and verification in terms of the
computational cost.

The remainder of this paper is organized as follows. In
Section II, we formalize the system model and security
model, and identify our design goals. Then, we give some
preliminaries including format preserving encryption and radix
tree in Section III. In Section IV, we present the details
of our proposed scheme, followed by the security analysis
and performance evaluation in Section V and Section VI,
respectively. Section VII reviews the related works. In the end,
Section VIII gives the conclusions of our paper.

II. MODELS AND DESIGN GOALS

In this section, we formalize our system model and security
model, and identify our design goals.

A. System Model

In our system model, we mainly consider a typical single-
user-and-cloud scenario, which includes two entities, namely
a cloud user CU and a cloud server CS, as shown in Fig. 1.

1. Encrypted files and index

2.a. Encrypted search query

2.b. Search result Cloud

User

Fig. 1. The system model under consideration

CS is powerful in both storage and computing, while CU,
which owns multiple terminals, e.g., laptop at home and smart
phone outside, is less powerful in storage. Therefore, CU is
willing to outsource his/her files to the cloud, so that he/she
can later access those outsourced files anywhere and anytime
via either laptop or smart phone. Outsourcing massive data
to cloud is a good strategy for CU. However, since CU’s data
may be very sensitive, and CS cannot be fully trusted, CU

has to encrypt data before outsourcing them to the cloud. For
example, before outsourcing a set of files F = {f1, f2, · · · }
and the corresponding index I, each entry of I stores a
keyword and those files associated with the keyword, as shown
in Fig. 2(a), CU needs to encrypt them into encrypted files
and index, as shown in Fig.2(b). Later, when CU launches a
query including one or many of operators “OR”, “AND”, “∗” and
“?”, CS will return valid and complete search results, i.e., all
encrypted files which match the issued query will be returned.

B. Security Model

In our security model, we no longer assume CS is honest
or honest-but-curious as in many other cloud storage systems

Encryption

E()

Files , , ⋯
Index I

Keywords Associated Files

, , ⋯
, ,⋯
, ,⋯

⋯ ⋯

Encrypted , , ⋯
Encrypted Index I’

Encrypted Associated Files

, , ⋯
, ,⋯
, ,⋯

⋯ ⋯

a. Files and associated index b. Encrypted files and associated index

Fig. 2. Transform files and index into encrypted ones before outsourcing

[29], [30]. Instead, we consider CS not only has the interests
in identifying the contents of files and keys uploaded by CU;
but also sometimes maliciously returns incorrect or incomplete
results when CU launches a query as mentioned before. Under
this assumption, when CU receives the search result from CS,
CU should have the ability to verify whether the result is valid
and complete.

Note that, we assume CU faithfully follows the protocol,
i.e., he/she will upload the valid encrypted files and index to
CS, and will not frame CS for returning invalid or incomplete
search results. In addition, we consider CU is memoryless with
respect to the uploaded files and keywords, i.e., he/she will
not maintain a local copy of them, but just keep some secret
keys used for encrypting/verifying these files and keywords.

C. Design Goals

Based on the above-mentioned in system model and security
model, our design goal is to develop a new verifiable SE
scheme for cloud storage to support verifiability and com-
plex search queries simultaneously. Specifically, the following
desirable properties should be achieved.
• Confidentiality of data: The prominent security require-

ment of the proposed verifiable SE is the data confi-
dentiality. In particular, except CU who outsourced the
data to the cloud, anyone else cannot gain the data
content from the encrypted files, encrypted keywords or
the interactions with CU.

• Verifiability of search results: When CS is considered as
malicious, the verifiability of the query data becomes
quite critical in the cloud storage. Hence, the proposed
verifiable SE scheme should enable CU to check the
validity and completeness of returned data from CS. In
particular, CU should be able to check whether all returned
files satisfying the query conditions, and whether all
encrypted files in cloud satisfying the query conditions
are returned.

• Supporting complex queries: The proposed verifiable SE
scheme should allow CU to launch various queries con-
taining one or many of operators “OR”, “AND”, “∗” and
“?”.

• Efficiency for cloud users: The proposed verifiable SE
scheme should be efficient for CU in terms of computa-
tional cost. In particular, the time-consuming operations,
such as exponentiation in finite cyclic groups should be
avoided in our proposal.

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2924372, IEEE
Transactions on Services Computing

3

III. PRELIMINARIES

Before delving into the design of our proposed verifiable SE
scheme, we first review some preliminaries, including format
preserving encryption (FPE) [27] and radix tree [25].

A. Format Preserving Encryption

Format Preserving Encryption (FPE) has recently become a
handy tool in cryptography [27], which can encrypt a plaintext
of some specified format into a ciphertext of the same format.
Typical examples of FPE include i) encrypting a 16-digit credit
card number into a ciphertext with another 16-digit number;
and ii) encrypting an English word into a ciphertext with
another English word. Since FPE is one of building blocks
of our design, we here recall a well-known FPE scheme in
[31]. Given a secret key k0 and a secure symmetric encryption
algorithm E(), e.g., AES, the FPE scheme is described as
follows:
• Given the capital letter set M = {‘A’, ‘B’, · · · , ‘Z’},

order all letters in M, i.e., ord(‘A’) = 0, ord(‘B’) =
1, · · · , ord(‘Z’) = 25. Note that, we can consider a
more general set including not only capital letters, but
also small letters, numbers, and special characters. For
simplicity of description, we just take the capital letter
set as an example here.

• For each letter i ∈ M, use the secret key k0 and E()
to compute its weight weight(i) = E(k0, i). Then, sort
{‘A’, ‘B’, · · · , ‘Z’} based on their calculated weights. For
example, Fig. 3 shows one possible sorting result, which
creates a random and private one-to-one mapping in M.

• With the private mapping in Fig. 3, we can construct
a FPE scheme. For example, given a word “CLOUD”,
we can encrypt it into a ciphertext “EDCBQ”; given
a ciphertext “JIEBPWHT”, we can also recover it as
“SECURITY”.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

↕ ↕

M S E Q I K N Y W F A D O R C G L P J H B X Z U T V

Fig. 3. Private one-to-one mapping based on weights calculated from
weight(i) = E(k0, i), where i ∈M.

B. Radix Tree

Radix tree (also called radix trie) is a data structure which
represents an order tree storing keywords [25]. The root node,
leaf nodes and inner nodes of a radix tree are associated with
special symbols $, #, and normal symbols in the keywords,
respectively. The special symbols $ and # indicate the start
and end of a keyword, respectively. We simply assume that
$ and # will never appear in any keyword; otherwise, we
would choose other special symbols to indicate the start and
end of a keyword. An example of a radix tree is given in Fig.
4(a), where keywords are “AH”, “AN”, “ANT”, “AT”, “BIG”,
“BIT” and “BITE”.

Radix tree could be considered as a good candidate data
structure for the hash table in search applications, since it does

not have collision for different values like the hash table. It
is also easy to see that once the radix tree is built, the time
complexity for searching keyword w is O(|w|), where |w|
is the number of symbols in the keyword. In addition, the
radix tree also enables us to achieve fuzzy queries (supporting
operators “∗” and “?”). When we apply the FPE technique
on the radix tree, we can obtain an encrypted version of
radix tree while still keeping its nice properties. For example,
if we follow the private one-to-one mapping in Fig. 3, we
can transform the radix tree in Fig. 4(a) into its encrypted
version in Fig. 4(b). Note that, if the frequencies of letters
in the original radix tree follow the English letter frequency,
its encrypted version may suffer from the frequency analysis
attack, i.e., some letters with high frequency will be identified.
To resist against the frequency analysis attack, we can disturb
the frequency by encrypting the same letter i into the different
letters. The details can be found in Section V-A.

$

T

#

#

#

$

#

I

#

#

FPE

a. An exemplary radix tree b. Encrypted version of the exemplary radix tree

‘A’ ‘B’

‘H’ ‘N’ ‘T’

‘T’

#

‘I’

‘G’ ‘T’

‘E’

‘M’ ‘S’

‘Y’ ‘R’ ‘H’

‘H’

‘W’

‘N’ ‘H’

‘I’

Fig. 4. An example of radix tree with keywords “AH”, “AN”, “ANT”, “AT”,
“BIG”, “BIT” and “BITE” and its encrypted version with FPE technique.

IV. OUR PROPOSED VERIFIABLE SEARCHABLE
ENCRYPTION FOR CLOUD STORAGE

In this section, we present our new verifiable SE scheme,
which mainly consists of the following four phases, name-
ly User Preparation (UserPrep), Search Token Generation
(TokenGen), Cloud Search (CloudSearch) and Verifi-
cation & Decryption (VerDec). In UserPrep phase, the
cloud user CU performs some preparations for cloud storage,
including building the encrypted radix tree as the encrypted
index, encrypting the files, and uploading the resultant data
to the cloud server CS. Once CU wants to retrieve some data
from CS, he/she could generate the search token for his/her
search query in TokenGen phase. Upon receiving the search
token from CU in CloudSearch phase, CS will find the
encrypted files according to the search token, and return them
to CU with the validity and completeness proof. Finally, in
VerDec phase, CU will check the validity and completeness
of the data received from CS and decrypt the encrypted files
if the checking passes successfully. The details of them are
described below.

A. Description of the Proposal

Our proposed verifiable SE scheme can support the search
query containing one or more of operators “OR”, “AND”, “∗”,

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2924372, IEEE
Transactions on Services Computing

4

“?”. For simplicity, we only show four kinds of processes
(search and verification) where queries contain only one of
these four basic operators. It is easy to see that other processes
can be easily extended from these four kinds of processes.

1) UserPrep: Assume that the files to be outsourced to
CS are F = {f1, f2, · · · , fnf

}, which have been sorted by
some rules, such as the file size or created time. CU will run
the following steps for the preparation.
• CU firstly chooses an HMAC scheme, an FPE scheme and

a symmetric key encryption E().
• CU also chooses three random keys k, k0 and k1, which

will be used in HMAC, FPE and E(), respectively.
• After choosing the underlying algorithms and their as-

sociated keys, CU encrypts each file fi ∈ F into f ′i =
E(k1, fi). We denote the resultant encrypted files as
F ′ = {f ′1, f ′2, · · · , f ′nf

}.
• CU further extracts keywords W = {w1, w2, · · · , wnw

}
from files F = {f1, f2, · · · , fnf

}. The symbols compos-
ing of these keywords are {s1, s2, · · · , sns

}.
• Based on the original keywords W =
{w1, w2, · · · , wnw}, CU builds a corresponding radix
tree. For example, when the keywords “AH”, “AN”,
“ANT”, “AT”, “BIG”, “BIT” and “BITE”, the radix tree
is shown in Fig. 4(a).

• CU obtains the encrypted symbols {s′1, s′2, · · · s′ns
} by

applying the underlying FPE scheme and k0. Then, by
replacing si with s′i, CU can also get the encrypted
keywords W ′ = {w′1, w′2, · · · , w′nw

}. For example, by
using the FPE scheme in Fig. 3, we can encrypt the
keyword “BITE” into “SWHI”. Furthermore, with the
encrypted symbols, CU can transform the radix tree into
its encrypted version, as shown in Fig. 4.

• CU adds a hash value hcpi
into each node except the

leaf nodes in the encrypted radix tree, where hcpi
=

HMAC(k,Api
||s′ij ,S

′
ci), Api

is the encrypted symbol chain
containing all the encrypted symbols in ancestor nodes
of the current node, s′ij is the encrypted symbol in
the current node, and S ′ci is the encrypted symbol set
containing all encrypted symbols in child nodes of the
current node. Take the encrypted radix tree in Fig. 4(b)
as an example, Api

, s′ij and S ′ci of the second left node
in level two are $“M”, ‘R’ and {#, ‘H’}, respectively.
Regarding the root node of the radix tree,Apr

is an empty
encrypted symbol chain.
The data structures of resultant root node and inner nodes
are as shown in Fig. 5(a) and Fig. 5(b), respectively.

Ancestor Chain ∅

Root $ HMAC , ∅||$,

Children Set

Ancestor Chain

Node HMAC , || ,

Children Set

Leaf # HMAC , ,

Descriptor Des

Bitmap HMAC , ,

Hash set , HMAC , , , …

a. root node

b. inner node c. leaf node

Fig. 5. Data structures of nodes in the resultant encrypted radix tree

• Furthermore, CU adds the following values into each leaf

node. Assume that the keyword corresponding to the
current leaf node is wi.

– hF ′wi
: It is a hash value computed by hF ′wi

=

HMAC(k,F ′wi
, wi), where F ′wi

is the set of all en-
crypted files whose corresponding (original) files
contain the keyword wi.

– DesF ′wi
: It is a descriptor of encrypted files in the set

F ′wi
. Note that the descriptor is just used for locating

the encrypted files, and no information about the file
content is involved.

– Bwi
: It is an nf -bit length number used to indicate

which files in F contain the keyword wi by using
the bitmap index technique [24]. Recall all files are
sorted, if file fj contains the keyword wi, the j-th
bit of Bwi

is set to 1; and 0 otherwise. In the rest
of this paper, we use Bwi

[j] to indicate that the j-th
bit of Bwi

.
– hBwi

: It is a hash value computed by hBwi
=

HMAC(k,Bwi , wi).
– HF ′wi

: For each f ′j ∈ F ′wi
, CU computes its hash

value hj,wi = HMAC(k, f ′j , wi). The resultant hash
values form the hash value set HF ′wi

.

The data structure of the resultant leaf nodes can be
described in Fig. 5(c).

• Finally, CU sends all the encrypted files F ′ and the
resultant encrypted radix tree T to CS.

2) TokenGen: To protect the privacy of keywords, CU in
this phase needs to encrypt all the symbols except the operators
in search query by using the underlying FPE scheme. For
example, the query wi = si,1si,2 · · · si,ti∗ will be encrypted
as w′i = s′i,1s

′
i,2 · · · s′i,ti∗. We call the obtained result after

encryption as the search token. In the end, CU sends the
resultant search token to CS.

3) CloudSearch: In this phase, we show how CS re-
sponds the queries containing “OR”, “AND”, “∗” or “?” one by
one.

a) Operator “OR”: Upon receiving the search token
w′i1

∨
w′i2 from CU, where w′i1 = s′i1,1s

′
i1,2
· · · s′i1,t1 and w′i1 =

s′i2,1s
′
i2,2
· · · s′i1,t2 , CS firstly searches w′i1 and w′i2 in the

encrypted radix tree. Assume that w′i1,s = s′i1,1s
′
i1,2
· · · s′i1,`∗1 ,

(`∗1 ≤ t1) and w′i2,s = si2,1si2,2 · · · si2,`∗2 , (`∗2 ≤ t2) are the
longest substrings found in the encrypted radix tree for w′i1
and w′i2 , respectively. After that, CS does the following steps.

• For each j ∈ {1, 2}, if `∗j < tj (case 1), or `∗j = tj while
none of the child nodes of the node corresponding to w′ij ,s
is a leaf node (case 2), we know that w′ij cannot be found
in the encrypted radix tree. Then, CS simply extracts
(hcp`∗

j
,S ′c`∗

j

) from the node corresponding to w′ij ,s.

• For each j ∈ {1, 2}, if `∗j = tj , and one of the
child nodes of the node corresponding to w′ij ,s is a
leaf node, we know that w′ij is found in the encrypted
radix tree. CS extracts DesF ′wij

and hF ′wij

from the leaf

node corresponding to w′ij in the encrypted radix tree.
Furthermore, CS obtains the corresponding encrypted file
set F ′wij

according to DesF ′wij

.

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2924372, IEEE
Transactions on Services Computing

5

Eventually, CS sends the obtained (`∗j , hcp`∗
j
,S ′c`∗

j

) and

(F ′wij
, hF ′wij

) to CU as the search result.

Note that (`∗j , hcp`∗
j
,S ′c`∗

j

) is the proof of that no file satisfies
keyword wij , and hF ′wij

is the proof of that all the encrypted

files in set F ′wij
satisfy the keyword wij .

b) Operator “AND”: Upon receiving the search token
w′i1

∧
w′i2 from CU, where w′i1 = s′i1,1s

′
i1,2
· · · s′i1,t1 and

w′i1 = s′i2,1s
′
i2,2
· · · s′i1,t2 , CS firstly searches w′i1 and w′i2 in

the encrypted radix tree. Like in the case of operator “OR”,
we also assume that w′i1,s = s′i1,1s

′
i1,2
· · · s′i1,`∗1 , (`∗1 ≤ t1)

and w′i2,s = si2,1si2,2 · · · si2,`∗2 , (`∗2 ≤ t2) are the longest
substrings found in the encrypted radix tree for w′i1 and w′i2 ,
respectively. After that, CS does the following steps.
• For j ∈ {1, 2}, if `∗j < tj (case 1), or `∗j = tj while

none of the child nodes of the node corresponding to
w′ij ,s is a leaf node (case 2), we know that w′ij can not
be found in the encrypted radix tree, and no file satisfies
the search query. At this point, CS simply extracts hcp`∗

j

and S ′c`∗
j

from the node corresponding to w′ij ,s, returns

(`∗j , hcp`∗
j
,S ′c`∗

j

) to CU as the search result, and aborts this
phase.
Note that (`∗j , hcp`∗

j
,S ′c`∗

j

) is the proof of that no file
satisfies the search query.

• If for all j ∈ {1, 2}, we have that `∗j = tj , and one of
the child nodes of node wij is a leaf node, we know that
both w′i1 and w′i2 are found in the encrypted radix tree.
CS continues to do the following steps.

– CS extracts (DesF ′wi1

, Bwi1
, hBwi1

,HF ′wi1

) and
(DesF ′wi2

, Bwi2
, hBwi2

,HF ′wi2

) from the leaf nodes
in the encrypted radix tree corresponding to w′i1 and
w′i2 , respectively.

– After the extraction, CS computes Bi = Bwi1
&Bwi2

,
where & is the bit AND operator. If Bi[`] = 1,
then file f` satisfies the search query wi1

∧
wi2 .

We denote F ′Bi
as the encrypted file set where

the encrypted files are selected according to the bit
position with 1 in Bi.

– After obtaining the files, CS needs to get the corre-
sponding values that show the files satisfy the search
query. Specifically, for all j ∈ {1, 2}, CS obtains a
hash value set HF ′wij

,Bi
= {h`,wij

|Bi[`] = 1, 1 ≤
` ≤ nf}.

– Lastly, the cloud server CS sends F ′Bi
and

{Bwij
, hBwij

,HF ′wij
,Bi
}2j=1 to CU as the search

result.
Note that {Bwij

, hBwij
}2j=1 is the proof of that how

many files satisfy the search query, and HF ′wij
,Bi

is the
proof of that all the files corresponding to the encrypted
files in F ′Bi

contain keyword wij .
c) Operator “∗”: Upon receiving the search token w′i =

s′i,1s
′
i,2 · · · s′i,t∗ from CU, CS searches s′i,1s

′
i,2 · · · s′i,t in the

encrypted radix tree. Assume that w′i,s = s′i,1s
′
i,2 · · · s′i,`∗ ,

(`∗ ≤ t) is the longest substring found in the encrypted radix
tree for s′i,1s

′
i,2 · · · s′i,t. CS does the following steps.

• If `∗ < t, we now that there is no file satisfying the search
token w′i. In this case, CS extracts hcp`∗ and S ′c`∗ from
the node corresponding to w′i,s, returns (`∗, hcp`∗ ,S ′c`∗)
to CU as the search result, and aborts this phase.
Note that (`∗j , hcp`∗

j
,S ′c`∗

j

) is the proof of that no file
satisfies the search query.

• If `∗ = t, we know that there exist files satisfying the
search query wi. CS continues to do the following steps.

– CS extracts a subtree T̄ from the encrypted radix tree,
and the node corresponding to w′i,s is the root node
of the subtree T̄ .

– After that, CS further extracts (DesF ′wij

, hF ′wij

)’s

from the leaf nodes of the subtree T̄ .
– According to DesF ′wij

’s, CS obtains the correspond-

ing encrypted file sets F ′wij
’s.

– Ultimately, CS sends F ′wij
’s as well as a subtree T̃ to

CU as the search result, where T̃ is almost the same
as T̄ , except that the leaf nodes in T̃ only contain
the symbol # and hF ′wij

’s.

Note that the subtree T̃ , especially the hash values in the
subtree T̃ , is the proof of that all the files corresponding to
the encrypted files in F ′wij

’s satisfying the search query.
d) Operator “?”: Upon receiving the search token

w′i = s′i,1 · · · s′i,j?s′i,j+2 · · · s′i,t from CU, CS searches
s′i,1s

′
i,2 · · · s′i,j in the encrypted radix tree. Assume that w′i,s =

s′i,1s
′
i,2 · · · s′i,`∗ , (`∗ ≤ j) is the longest substring found in the

encrypted radix tree for s′i,1s
′
i,2 · · · s′i,j . CS does the following

steps.
• If `∗ < j, we have that there is no file satisfying the

search token w′i. CS directly returns (`∗, hcp`∗ ,S ′c`∗) to
CU as the search result, and aborts this phase.
Note that (`∗, hcp`∗ ,S ′c`∗) is the proof of that no file
satisfies the search query.

• If `∗ = j, CS continues to do the following steps.
– CS extracts hcpj

and S ′cj from the node correspond-
ing to w′i,s.

– CS further extracts one subtree for each child node of
the node corresponding to w′i,s from the encrypted
radix tree by treating each child node as the root node
of the associated extracted subtree. The resultant
extracted subtrees consist of a subtree set Tw′i,s .

– For each subtree in Tw′i,s , CS checks whether
s′i,j+2s

′
i,j+3 · · · s′i,t exists in the corresponding sub-

tree. Assume that the encrypted symbol in the root
node of the current subtree is s′ij̄ , and w′i,s̄ =

s′i,j+2s
′
i,j+3 · · · s′i, ¯̀∗ , (¯̀∗ ≤ t) is the longest substring

found in the current subtree for s′i,j+2s
′
i,j+3 · · · s′i,t.

Note that during the search process, the root node of
the subtree is never compared as that in the encrypted
radix tree.
∗ If ¯̀∗ < t (case 1), or ¯̀∗ = t while none of child

nodes of the node corresponding to w′i,s̄ is a leaf
node (case 2), we know that s′i,j+2s

′
i,j+3 · · · s′i,t

is not found in the subtree. CS extracts hcp ¯̀∗ and
S ′c ¯̀∗ from the node corresponding to w′i,s̄.

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2924372, IEEE
Transactions on Services Computing

6

∗ If ¯̀∗ = t, and one of child nodes of the node
corresponding to w′i,s̄ is a leaf node, we know
that s′i,j+2s

′
i,j+3 · · · s′i,t is found in the subtree.

CS extracts DesF ′wij̄

and hF ′wij̄

from the corre-

sponding leaf node of the subtree. According to
DesF ′wij̄

, CS obtains the corresponding encrypted

file set F ′wij̄
.

– CS sends the obtained (s′ij̄ ,
¯̀∗, hcp ¯̀∗ ,S ′c ¯̀∗)’s,

(s′ij̄ ,F
′
wij̄

, hF ′wij̄

)’s, and hcpj
to CU as the search

result.
Note that hcpj

is the proof of that all the possible
encrypted symbols for operator “?” in the radix tree
are listed in the search result, (s′ij̄ ,

¯̀∗, hcp ¯̀∗ ,S ′c ¯̀∗) is the
proof of that there is no satisfied file if operator “?” is
replaced by s′ij̄ , and hF ′wij̄

is the proof of that all the

encrypted files in F ′wij̄
satisfy the keyword when operator

“?” is replaced by s′ij̄ .
4) VerDec: As in CloudSearch phase, we only give

the processes of the basic four operators in VerDec phase.
We also imply that if the validity and completeness checking
pass successfully, CU would use k1 to decrypt the received
encrypted files. The detailed process of decryption is omitted
in the following description.

a) Operator “OR”: On receiving the search result
from CS for the search token w′i1

∨
w′i2 , where w′i1 =

s′i1,1s
′
i1,2
· · · s′i1,t1 and w′i1 = s′i2,1s

′
i2,2
· · · s′i1,t2 , CU checks

the validity and completeness as follows.
For the part (`∗j , hcp`∗

j
,S ′c`∗

j

), CU checks whether

s′ij ,`∗j +1 6∈ S ′c`∗
j

(1)

and
hcp`∗

j
= HMAC(k, $||s′ij ,1|| · · · ||s

′
ij ,`∗j

,S ′c`∗
j

) (2)

Note that if `∗j = tj , then we set s′ij ,`∗j +1 = #.
For the part (F ′wij

, hF ′wij

), CU just checks whether hF ′wij

=

HMAC(k,F ′wij
, wij) holds.

If all of above conditions are satisfied, then the returned
search result is valid and complete; otherwise, it is invalid or
incomplete.

b) Operator “AND”: On receiving the search result from
CS for the search token w′i1

∧
w′i2 from CU, where w′i1 =

s′i1,1s
′
i1,2
· · · s′i1,t1 and w′i1 = s′i2,1s

′
i2,2
· · · s′i1,t2 , CU can per-

form the checking process as follows.
• If the result is (`∗j , hcp`∗

j
,S ′c`∗

j

), CU checks whether condi-
tions (1) and (2) are satisfied. If both of them are satisfied,
then the returned search result is valid and complete
(there is indeed no file satisfying the query); otherwise,
it is incomplete.

• If the result is F ′Bi
and {Bwij

, hBwij
,HF ′wij

,Bi
}2j=1, CU

does the following steps.
– Check whether hBwij

= HMAC(k,Bwij
, wij) holds

for all j ∈ {1, 2}. If one of them does not hold, the
search result is invalid. Otherwise, do the next step.

– Compute Bi = Bwi1
&Bwi2

, and check whether the
size of F ′Bi

equals the number of bits with 1 in Bi. If
it is not, the search result is incomplete. Otherwise,
do the next step.

– Check whether h`,wij
= HMAC(k, f ′`, wij) holds for

all h`,wij
∈ HF ′wij

,Bi
and all j ∈ {1, 2}. If one

of the equalities does not hold, the search result
is invalid; otherwise, the search result is valid and
complete.

c) Operator “∗”: On receiving the search result from CS

for the search token w′i = s′i,1s
′
i,2 · · · s′i,t∗, CU can perform the

checking process as follows.
• If the result is (`∗, hcp`∗ ,S ′c`∗), CU checks whether

hcp`∗ = HMAC(k, $||s′i,1|| · · · ||s′i,`∗ ,S ′c`∗) and s′i,`∗+1 6∈
S ′c`∗ . If both of the above conditions are satisfied, then
the returned search result is valid and complete (there
is indeed no file satisfying the query); otherwise, it is
incomplete.

• If the result is F ′wij
’s and subtree T̃ , CU does the

following checking.
– Check whether hcp`

= HMAC(k, $||Ap`
||s′`,S ′c`)

holds for every node except the leaf nodes in subtree
T̃ .

– Check whether hF ′wi`

= HMAC(k,F ′wi`
, wi`) holds

for every leaf node in subtree T̃ .
If all the above equalities hold, then the returned search
result is valid and complete; otherwise, it is invalid or
incomplete.
d) Operator “?”: On receiving the search result from

CS for the search token w′i = s′i,1 · · · s′i,j?s′i,j+2 · · · s′i,t, CU
can perform the checking process as follows.
• If the search result is (`∗, hcp`∗ ,S ′c`∗), CU can do the

checking as that in the case of operator “∗”.
• If the search result is (s′ij̄ ,

¯̀∗, hcp ¯̀∗ ,S ′c ¯̀∗)’s,
(s′ij̄ ,F

′
wij̄

, hF ′wij̄

)’s and hcpj
, CU does the following

steps.
– Check whether the equality hcpj

=
HMAC(k, $||s′i,1|| · · · ||s′ij , {s

′
ij̄
}) holds. If it does

not hold, the search result is invalid or incomplete;
otherwise, do the next step.

– For the part (s′ij̄ ,
¯̀∗, hcp ¯̀∗ ,S ′c ¯̀∗), CU checks whether

hcp ¯̀∗ = HMAC(k, $||s′i,1|| · · · ||s′i, ¯̀∗ ,S ′c`∗) and
s′
i, ¯̀∗+1

6∈ S ′c ¯̀∗ are satisfied. Note that if ¯̀∗ = t,
then we set s′

i, ¯̀∗+1
= #.

For the part (s′ij̄ ,F
′
wij̄

, hF ′wij̄

), CU checks

whether hF ′wij̄

= HMAC(k,F ′wij̄
, wij̄) holds,

where wij̄ is the keyword corresponding to
w′ij̄ = s′i,1 · · · s′i,js′ij̄s

′
i,j+2 · · · s′i,t.

If all of the above checking steps pass successfully,
then the returned search result is valid and complete;
otherwise, it is invalid or incomplete.

B. A Toy Example
In this section, we will give a toy example to further clarify

our proposed verifiable SE scheme. Assume that there are

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2924372, IEEE
Transactions on Services Computing

7

seven keywords {“AH”, “AN”, “ANT”, “AT”, “BIG”, “BIT”,
“BITE”} and eight files {f1, f2, f3, f4, f5, f6, f7, f8} in our
example. The relationship between keywords and files is given
in Table I. Furthermore, the underlying FPE scheme in the
example is the one in Fig. 3, and the corresponding encrypted
radix tree is constructed as shown in Fig. 6. Note that the
hash values in Fig. 6 are not computed by the real HMAC but
just manipulated for illustration. Now we are ready to give the
query examples.

Keyword “AH” “AN” “ANT” “AT” “BIG” “BIT” “BITE”
File f1, f4, f5, f8 f2 f1, f4 f1, f3, f7 f2, f6 f5, f8 f1

TABLE I. The files and associated keywords in the toy example

$ 267

′M′ 215 ′S′ 273

′Y′ 224 ′R′ 236 ′H′ 238 ′W′ 259

378

Des , , , 	

153 389
423,436,
457,438

357

Des 	

2 311
443

′H′ 238

320

Des , 	

9 334
421,467

362

Des , 	

34 335
478,469

313

Des , , 	

69 310
476,418,
496

′N′ 262 ′H′ 238

399

Des , 	

114 358
486,432

327

Des 	

1 388
451

′I′ 222

Fig. 6. The encrypted radix tree of the toy example

1) Operator “OR”: Assume that the search query is
wi1

∨
wi2 , where wi1 = “SEC” and wi2 = “BIT”, the

corresponding search token is w′i1
∨
w′i2 = “JIE”

∨
“SWH”.

For w′i1 = “JIE”, CS cannot find any child node of the root
node in the encrypted radix tree equal to ‘J’, hence it obtains
(`∗1, hcp`∗1

,S ′c`∗1) = (0, 267, {′M′,′ S′}). For w′i2 = “SWH”,
CS can find it in the encrypted radix tree, hence it obtains
(Fwi2

, hF ′wi2

) = ({f ′1}, 327). After the above steps, CS sends
(0, 267, {′M′,′ S′}) and ({f ′1}, 327) to the CU as the search
result.

To check the validity and completeness of the search
result, CU checks whether ′J′ 6∈ {′M′,′ S′}, 267 =
HMAC(k, $, {′M′,′ S′}), and 327 = HMAC(k, {f ′1}, “BIT”). If
one of the above conditions is not satisfied, the search result
is invalid or incomplete; otherwise, it is valid and complete.

2) Operator “AND”: In this case, we will give two exam-
ples, which leads to different processes.

a) No file matching the search query: Assume that
the search query is wi1

∧
wi2 , where wi1 = “SEC” and

wi2 = “BIT”, the corresponding search token is w′i1
∧

w′i2 =
“JIE”

∧
“SWH”.

For w′i1 = “JIE”, CS can obtain (`∗1, hcp`∗1
,S ′c`∗1) =

(0, 267, {′M′,′ S′}) as that in the previous example. In this
case, CS simply returns (0, 267, {′M′,′ S′}) as the search result.
Note that it is no need to search “SWH” in the encrypted radix
tree due to the property of operator “AND”.

To check the validity and completeness of
(0, 267, {′M′,′ S′}), CU checks whether ′J′ 6∈ {′M′,′ S′},

and 267 = HMAC(k, $, {′M′,′ S′}). If one of the above
conditions is not satisfied, the search result is invalid or
incomplete; otherwise, it is valid and complete.

b) Files matching the search query: Assume that the
search query is wi1

∧
wi2 , where wi1 = “AH” and wi2 =

“BITE”, the corresponding search token is w′i1
∧

w′i2 =
“MY”

∧
“SWHI”.

Clearly, CS can find “MY” and “SWHI” in the encrypted
radix tree, and it obtains (Bwi1

, hBwi1
) = (153, 389) and

(Bwi2
, hBwi2

) = (114, 358). After that, it computes Bi =

Bwi1
&Bwi2

= 114 = (10010000)2. From (10010000)2, CS
know that f5 and f8 satisfy the search query wi1

∧
wi2 .

According to Des5,8, CS gets {f ′5, f ′8}. Furthermore, it also
extracts HF ′wi1

,Bi
= {457, 438} and HF ′wi2

,Bi
= {486, 432}

from the encrypted radix tree. In the end, CS returns
({f ′5, f ′8}, (153, 389, {457, 438}), (114, 358, {486, 432})).

To verify the validity and completeness of
({f ′5, f ′8}, (153, 389, {457, 438}), (114, 358, {486, 432})),
CU first checks

389 = HMAC(k, 153, “AH”), 358 = HMAC(k, 114, “BITE”).

If one of the above equalities does not hold, the search result
is invalid; otherwise, CU computes 153&114 = (10010000)2,
and gets two bits with value 1 in (10010000)2. If the size
of {f ′5, f ′8} is not two, then the search result is incomplete;
otherwise, CU checks

457 = HMAC(k, f ′5, “AH”), 438 = HMAC(k, f ′8, “AH”),
486 = HMAC(k, f ′5, “BITE”), 432 = HMAC(k, f ′8, “BITE”).

If one of the above equalities does not hold, the search result
is invalid or incomplete; otherwise, it is valid and complete.

3) Operator “∗”: As that in operator “AND” case, we have
two query examples in this case.

a) No file matching the search query: Assume that the
search query is wi, where wi = “SEC ∗ ”, the corresponding
search token is w′i = “JIE ∗ ”. It is easy to see that CS will
return (`∗, hcp`∗ ,S ′c`∗) = (0, 267, {′M′,′ S′}) as the search
result.

To check the validity and completeness of the search result,
CU simply checks whether ′J′ 6∈ {′M′,′ S′} and 267 =
HMAC(k, $, {′M′,′ S′}). If one of the above conditions is not
satisfied, the search result is invalid or incomplete; otherwise,
it is valid and complete.

b) Files matching the search query: Assume that the
search query is wi, where wi = “BIT ∗ ”, the corresponding
search token is w′i = “SWH∗”. According to this search token,
CS finds “SWH" in the encrypted radix tree, and gets a subtree
T̃ . In the subtree T̃ , the root node is the node ‘H’ 238
in level three of the encrypted radix tree, the inner node is
the node ‘I’ 222 in level four of the encrypted radix tree,
and the leaf nodes are nodes # 399 and # 327 as
shown in Fig. 6. Furthermore, CS fetches {f ′5, f ′8} and {f ′1}
according to Des5,8 and Des1 in the corresponding leaf nodes,
respectively. After the above steps, CS sends {f ′5, f ′8}, {f ′1}
and T̃ to CU as the search result.

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2924372, IEEE
Transactions on Services Computing

8

To check the validity and completeness of {f ′5, f ′8}, {f ′1}
and T̃ , CU checks

238 = HMAC(k, $“SWH”, {′I′,#}),
222 = HMAC(k, $“SWHI”, {#}),
399 = HMAC(k, {f ′5, f ′8}, “BITE”),
327 = HMAC(k, {f ′1}, “BIT”).

If one of the above equalities does not hold, the search result
is invalid or incomplete; otherwise, it is valid and complete.

4) Operator “?”: In this case, we omit the query example
where the symbol subchain before operator “?” cannot be
found in the encrypted radix tree, since it is almost the same
as in the case of operator “∗”.

Assume that the search query is wi = “BI?E”, and the
corresponding search token is w′i = “SW?I”. According to
the search token, CS can get “SW" in the encrypted radix tree,
and find ‘I’ in the subtree with root node ‘H’ 238 in
level two but not the subtree with root node ‘N’ 262 in
level two. As a result, the search result is (′N′, 3, 262, {#}),
(′H′, {f ′5, f ′8}, 399) and 259.

To check the validity and completeness of the search result,
CU checks

259 = HMAC(k, $“SW”, {′N′,′H′}),
262 = HMAC(k, $“SWN”, {#}),
399 = HMAC(k, {f ′5, f ′8}, “BITE”).

Note that CU can decrypt ′H′ to get ′T′ according to the
relationship in Fig. 3. If one of the above equalities does not
hold, the search result is invalid or incomplete; otherwise, it
is valid and complete.

Notes. From the above toy example, we can see that every
component in our design has its own functionality. The radix
tree data structure is used to realize the fuzzy keyword search.
The values of hcpi ’s are used to guarantee the integrity of the
radix tree, and each of them can authenticate the position of
the corresponding encrypted symbol in the encrypted radix
tree.

From the bitmap arrays Bi’s, we can know how many files
satisfying the search query, which is used to realize operator
“AND”. The integrity of bitmap arrays is guaranteed by the
values of hBi

’s. However, the bitmap arrays cannot realize
operator “AND” alone, we still need hj,wi ’s to make sure which
file satisfies the search query.

For operators “OR”, “∗” and “?”, the search result should
contain all the files satisfying one keyword associated to the
search query. In this case, hF ′wi

’s are used to ensure all the
files are included in the search result.

V. SECURITY ANALYSIS

In this section, we will analyze the security of our proposed
verifiable SE scheme, especially the confidentiality of files and
the verifiability of the search results.

A. Confidentiality of Files

Due to the simplicity, it is easy to obtain the following two
theorems from the description of our proposal.

Theorem 1. If the underlying FPE scheme is a secure pseu-
dorandom permutation, then the algorithm for encrypting the
radix tree is a secure pseudorandom permutation.

Theorem 2. If the underlying symmetric key scheme is crypto-
graphically secure, then the algorithm for encrypting the files
is cryptographically secure.

However, as we mentioned in Section III-B, the encrypted
radix tree may reveal some secret information if the symbol
frequency in the encrypted radix tree reflects that in some
keyword set. Fortunately, this frequency analysis attack can
be mitigated by slightly modifying the proposed protocol as
follows. In particular, the process s′i ⇐ FPE(k0, si) is replaced
by s′i ⇐ FPE(ki,w, si), where ki,w = KDF(k0,Ai,w), KDF is
a cryptographically secure key derivation function, and Ai,w

is the prefix of the current keyword w before symbol si.
According to Theorem 3, we know that the symbol frequency
is garbled.

Theorem 3. If the underlying FPE and KDF are a pseudoran-
dom permutation and a pseudorandom function, respectively;
then the modified algorithm for encrypting radix tree cannot
yield the same encrypted symbol for the same symbol with
different prefixes.

Proof: If the two prefixes are different, i.e., Aw 6=
Aw′ , then we have that kw(= KDF(k0,Aw)) 6= kw′(=
KDF(k0,Aw′)) according to that the underlying KDF is a
pseudorandom function. Furthermore, we have that s′i(⇐
FPE(kw, si)) 6= s′′i (⇐ FPE(kw′ , si)) with kw 6= kw′ according
to that the underlying FPE is a pseudorandom permutation.

Furthermore, according to Theorem 4, we have that the
correctness of our proposal won’t be affected by the above
mitigation.

Theorem 4. Two different keywords will always yield two
different encrypted keywords. That is, if w0 6= w1, then
w′0 6= w′1.

Proof: Without loss of generality, we assume that w0 =
s0,1s0,2 · · · s0,`0 and w1 = s1,1s1,2 · · · s1,`1 , and the i-th
position is the first different position between w0 and w1, i.e.,
s0,1s0,2 · · · s0,i−1 = s1,1s1,2 · · · s1,i−1 and s0,i 6= s1,i.

Firstly, since s0,1s0,2 · · · s0,i−1 = s1,1s1,2 · · · s1,i−1, we
can easily obtain that ki,w0 = ki,w1 from the two e-
qualities ki,w0 = KDF(k0, s0,1s0,2 · · · s0,i−1) and ki,w1 =
KDF(k0, s1,1s1,2 · · · s1,i−1). Secondly, since FPE is a secure
permutation, we can easily obtain that s′0,i 6= s′1,i from
s′0,i ⇐ FPE(ki,w0

, s0,i) and s′1,i ⇐ FPE(ki,w1
, s1,i). Hence, we

have that s′0,1s
′
0,2 · · · s′0,`0 6= s′1,1s

′
1,2 · · · s′1,`1 , i.e., w′0 6= w′1.

Note that, it is also possible for an adversary to corrupt
the cloud server CS and use the information of either access
pattern or search pattern to expose the content of files. The
access patten refers to the information on those (encrypted)
files contain the queried (encrypted) keywords, and the search
patten is the information as to whether two search tokens
are associated to the same search query. According to the
analysis in [32] and [33], our proposal suffers from the access
pattern attack and the search attack. Luckily, two generic

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2924372, IEEE
Transactions on Services Computing

9

solutions for these two attacks have also been proposed in
[32] and [33], respectively. These two solutions are suitable
for any searchable solutions while at the expense of a few
false positives and some dummy queries, respectively. We
can directly apply them in our proposal. Since the main
contribution of this paper is the verifiability of the search
result, we omit this part in this paper. We refer the interested
readers to [32], [33] for more details.

B. Verifiability of the Search Results

Theorem 5. If the underlying HMAC is unforgeable under
chosen message attacks, then no probabilistic polynomial time
adversary can break the verifiability of our proposal with a
non-negligible probability.

Proof: Assume there exists an adversary that can break
the verifiability of our proposal; then we can build the fol-
lowing algorithm interacting with the adversary to break the
unforgeability of the underlying HMAC. That is, our algorithm
aims to generate a valid MAC, while the corresponding
message has never been queried.

Query: We can use the oracle for generating MAC of the
underlying HMAC to respond the MAC queries issued by the
adversary.

Output: When the adversary successfully breaks the verifi-
ability of our proposal, one of the following conditions should
be satisfied.
• The tuple (hcpi

,Api
, s′i,S ′ci) has never been queried

by the adversary, but it satisfies the condition hcpi
=

HMAC(k,Api
||s′i,S ′ci).

• The tuple (hF ′wi
,F ′wi

, wi) has never been queried by
the adversary, but it satisfies the condition hF ′wi

=

HMAC(k,F ′wi
, wi).

• The tuple (hj,wi
, f ′j , wi) has never been generated by

the adversary, but it satisfies the condition hj,wi
=

HMAC(k, f ′j , wi).
• The tuple (hBwi

, Bwi , wi) has never been generated by
the adversary, but it satisfies the condition hBwi

=
HMAC(k,Bwi

, wi).
It is easy to see that any of the above four cases is a valid

output to break the unforgeability of the underlying HMAC.

VI. PERFORMANCE EVALUATION

In this section, we will evaluate the performance of our
proposed verifiable SE scheme in terms of communication
overhead and computational costs.

Communication Overhead The communication overhead
of queries from CU to CS is the same as that in the normal
cloud storage systems due to the property of format preserving
encryption, i.e., no ciphertext expansion. While the communi-
cation overhead of responses from CS to CU varies from one
operator to another, and it is relatively small if we do not take
the part of encrypted files into consideration for evaluation, as
the communication costs for returning the encrypted files are
the same in all encrypted cloud storage systems. In particular,
it is proportional to the number of keywords for the case of

operator “OR”. For each keyword, it costs (`∗, hcp,S ′c`∗) or hF ′
that is less than 500bits under the situation that |`∗| < 34bits,
|hcp| = |hF ′ | = 256bits, and |S ′c`∗ | ≤ 26 ∗ 8 = 208bits.
Regarding the case of operator “AND”, it is proportional to
the number of keywords and the number of satisfied files due
to {B, hB ,H}. It is easy to see that it costs one hash value
for each keyword/satisfied file pair, and it also costs nf bits
and one hash value for each keyword. Finally, for the cases
of operators “∗” and “?”, it is proportional to the number of
branches of the radix tree satisfying the query, which is similar
with the case of operator “OR”.

Computational Cost For the computational cost, we would
like to give the analysis based on experimental results without
counting the time of decryption on the encrypted files. Con-
cretely, we first implemented our scheme (with SHA256 as
the underlying hash function) using Java without multithread
or any other parallel techniques, and then ran the cloud-side
programs (the search process) on a server and the user-side
programs (the search result verification) on both a laptop and
a smart phone. The server is deployed with Intel Xeon E5-
2603v4 1.7 GHz and 32 GB memory running Ubuntu 16.04
LTS, the laptop is equipped with Intel Core i5-4210U 1.7 GHz
and 8 GB memory running Windows 10 Professional, and the
smart phone is implemented with Kirin 960 and 6 GB memory
running Android 7.0.

The underlying dataset in our experiment is composed
by 15,000 random documents larger than 100 bytes from
Wikivoyage [34], and the underlying radix tree is constructed
based on 8,000 corresponding keywords parsed from these
15,000 documents. The resultant keyword length (the number
of symbols in the keyword) distribution can be found in Fig.
7. Every point in Figs. 8-13 is derived from average result
of 100 runs with the same query. For the conveniences of
description, we denote qs and kl respectively as the query
size (the number of keywords in the query) and the keyword
length in the following experiments.

0 5 10 15 20 25 30 35 40

Length of Keyword

0

200

400

600

800

1000

1200

Fig. 7. Keyword length distribution.

A. Operator “OR”

In the experiment for operator “OR”, we have ten different
query sizes ranging from one to ten.

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2924372, IEEE
Transactions on Services Computing

10

1) Search Efficiency: Due to the property of the radix tree
and operator “OR”, CS would do kl comparisons at most
for one keyword with length kl, and qs · kl comparisons
at most for one query containing qs keywords with length
kl. The keyword length of each keyword varies due to the
random keyword generation, which will cause quite different
experimental results even for the queries with the same query
size. To remove this influence, we not only ran the same kind
of query for 100 times with randomly generated keywords, but
also make use of the box-and-whisker diagram to show the
experimental result distribution. In Fig. 8, we plot the search
efficiency for queries with operator “OR” varying with keyword
count from 1 to 10. In the figure, the box-and-whisker diagram
used in this paper has the following properties: i) The bottom
and top of the box, and the band inside the box denote the
first, third, and second quartile of the data, respectively; ii) the
lower (resp. upper) whisker denotes the lowest (resp. highest)
datum within 1.5 interquartile range (IQR) of the lower (resp.
upper) quartile; ii) outliers that are not included between the
whiskers are plotted as individual points. From the figure, we
can see that the computational cost increases as the query size
increases as expected.

1 2 3 4 5 6 7 8 9 10

Keyword Count

0

1

2

3

4

5

T
im

e
 (
µ
s)

Fig. 8. Search efficiency for queries with operator “OR”

2) Verification Efficiency: For queries only containing
operator “OR”, the returned result would contain several
(F ′wij

, hF ′wij

)’s and (`∗j , hcp`∗
j
,S ′c`∗

j

)’s, and one of them cor-
responds to one keyword. On the other hand, no matter
(F ′wij

, hF ′wij

) or (`∗j , hcp`∗
j
,S ′c`∗

j

), only one HMAC computation
is required to do the verification. Hence, for queries with
size qs in the case of operator “OR”, we need to perform
qs HMAC computations to verify the returned search result.
Corresponding to the search experiments, we ran every kind
of query for 100 times and make use of the box-and-whisker
diagram to show the experimental result. From Figs. 9(a) and
9(b), we can see that the computational cost increases as the
query size increases as expected.

B. Operator “AND”

Similar with the experiment of operator “OR”, we have nine
different query sizes ranging from two to ten in this experi-
ment. Note that the keywords in this experiment are randomly

1 2 3 4 5 6 7 8 9 10

Keyword Count

0

50

100

150

200

T
im

e
 (

m
s)

(a) Verifying in a laptop

1 2 3 4 5 6 7 8 9 10

Keyword Count

0

50

100

150

200

250

300

T
im

e
 (

m
s)

(b) Verifying in a smart phone

Fig. 9. Verification efficiency for queries with operator “OR”

chosen from the 8,000 keywords parsed from our dataset. With
this keyword choice, there would be no short-circuiting of
operator “AND” happens during the search process, and the
computational cost of the search process would be maximized
for each kind of query. If the maximum computational cost is
still low, then we can claim that our proposal is efficient for
search with operator “AND”.

1) Search Efficiency: Since all the keywords are chosen
from the 8,000 keywords of our dataset, CS has to do the
search for every keyword in the query. Similar with that in
the case of operator “OR”, CS would do qs ·kl comparisons at
most. Again, to obtain a convictive experimental result, we ran
the same kind of query 100 times with randomly generated
keywords and make use of the box-and-whisker diagram to
show the experimental result. From Fig. 10, we can see that
the computational cost increases as the query size increases as
expected.

1 2 3 4 5 6 7 8 9 10

Keyword Count

0.00

0.02

0.04

0.06

0.08

0.10

T
im

e
 (

m
s)

Fig. 10. Search efficiency for queries with operator “AND”

2) Verification Efficiency: To verify the completeness and
correctness of the returned search result, CU needs to finish
the following three tasks. i) Verify the integrity of bitmap
corresponding to each keyword, ii) compute the “Bit AND”
result of these bitmaps and count the number of bit 1 in the
obtained result, ii) compute HMAC’s for each satisfied file with
every keyword in the query. Hence, the computational cost in
this experiment is related to not only the query size, but also
the number of satisfied files that varies due to the underlying
keywords and dataset. Corresponding to the search experiment,
we ran the same kind of query 100 times and make use of
the box-and-whisker diagram to show the experimental result
as previous experiments. From Figs. 11(a) and 11(b), we can

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2924372, IEEE
Transactions on Services Computing

11

see that the computational cost increases as the query size
increases as expected.

1 2 3 4 5 6 7 8 9 10

Keyword Count

0.00

0.05

0.10

0.15

0.20

0.25

0.30

T
im

e
 (

m
s)

(a) Verifying in a laptop

1 2 3 4 5 6 7 8 9 10

Keyword Count

0.0

0.5

1.0

1.5

2.0

T
im

e
 (

m
s)

(b) Verifying in a smart phone

Fig. 11. Verification efficiency for queries with operator “AND”

At first glance, the experimental results in Figs. 11(a)
and 11(b) are wrong. Theoretically, the number of HMAC

computation of operator “AND” is a lot more than that of
operator “OR”. However, the experimental result shows that
the verification of operator “AND” is more efficient than that
of operator “OR”. This conflict is mainly because that the input
of HMAC in the case of operator “OR” is a lot larger than that
of operator “AND”.

C. Operator “∗”

Similar with the previous experiments, we have ten different
kinds of queries with ten different prefix lengths ranging
from one to ten, where the prefix is the symbols before “∗”.
Furthermore, we require that all the encrypted prefixes can be
found in the radix tree, which makes the computational cost
of search process in this experiment reach maximum.

1) Search Efficiency: The main search step for operator
“∗” is to search the encrypted prefix in the radix tree. Hence,
the computational cost is quite similar to the case of operator
“OR” with one keyword. Here, we still ran the same kind of
query for 100 times with randomly generated keywords and
use the box-and-whisker diagram to show the experimental
result as previous experiments. Fig. 12 indicates that the
computational cost remains almost the same as the prefix
length increases, which is against the theoretical analysis. The
reason of this conflict is mainly because the computational
cost of an encrypted symbol comparison in the radix tree is
quite low and ten comparison times are the maximum number
in our experiment.

2) Verification Efficiency: Since CS always returns a subtree
of the underlying radix tree in this experiment, the computa-
tional cost for the verification is mainly to the verification of
the returned subtree. Again, we ran the same kind of query for
100 times with randomly generated keywords, while we use
3-dimension figures to show the relationship among the prefix
length, the size of the returned tree and the verification time
as in Figs. 13(a) and 13(b). The cross points in these figures
are the projection of the circle points on the coordinate plane.
The projection on the left plane shows that the computational
cost increases as the returned subtree becomes larger, while
the projection on the bottom plane shows that shorter prefix,
larger subtree.

1 2 3 4 5 6 7 8 9

Prefix Length

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (
µ
s)

Fig. 12. Search efficiency for queries with operator “∗”

Prefix Length

0 1 2 3 4 5 6 7 8 9 10
Node N

umber

0

1500

3000
4500

6000

T
im

e
(m

s)

0

10

20

30

40

50

(a) Verifying in a laptop

Prefix Length

0 1 2 3 4 5 6 7 8 9 10
Node N

umber

0

1500

3000
4500

6000

T
im

e
(m

s)

0

20

40

60

80

100

(b) Verifying in a smart phone

Fig. 13. Verification efficiency for queries with operator “∗”

D. Operator “?”

In this experiment, we have 100 kinds of queries with
different lengths of prefix and suffix, where the prefix and
suffix of a query are the symbols before “?” and that after “?”,
respectively. The lengths of prefix and suffix range from zero
to ten, and the length of the query (excluding “?”) is always
ten. Furthermore, we required that the encrypted prefix can be
always found in the radix tree, which makes the computational
cost of search on the prefix reach maximum.

1) Search Efficiency: There are two main parts for the
search of operator “?”. One is for the search on the en-
crypted prefix in the radix tree, the other is for the search
on the encrypted suffix in the radix tree starting from the
second generation descendants of the node corresponding to
the encrypted prefix. For the first part, CS would do lenp
comparisons when the prefix length is lenp. While regarding
the second part, CS would do lens ∗ n comparisons at most,
if the suffix length is lens and there are n child nodes of
the node corresponding to the encrypted prefix. As previous
experiments, we ran the same kind of query for 100 times with
randomly generated keywords, while we use a 3-dimension
figure to show the relationship among prefix length, suffix
length and the verification time. Fig. 14 shows that longer
prefix consumes less time, which coordinates with the situation
that the shorter the prefix, the more characters that can be
connected behind it in general.

2) Verification Efficiency: CS can always find satisfied files
according to the properties of queries in this experiment.
Hence, the computational cost of verification is mainly related
to the number of child nodes of the node corresponding to

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2924372, IEEE
Transactions on Services Computing

12

Fig. 14. Search efficiency for queries with operator “?”

the encrypted prefix and the number of files contained in the
response. Figs. 15(a) and 15(b) demonstrate the relationship
among prefix length, suffix length, and verification time, while
Fig. 16 shows the relationship among prefix length, suffix
length, and the number of returned files. With these figures, we
can deduce that the verification time is mainly related to the
number of returned files as the theoretical analysis. Moreover,
Figs. 16(c) and 16(d) show the average verification time among
different prefix and suffix length. As illustrated in these two
figures, the time for the client to verify most of the search
responses is less than 20ms.

(a) Verifying in a laptop (b) Verifying in a smart phone

0 2 4 6 8 10

Suffix Length

0

2

4

6

8

10

P
re

fi
x
 L

e
n
g
th

150

300

450

600

750

900

1050

1200

T
im

e
(m

s)

(c) Average verification time for a lap-
top

0 2 4 6 8 10

Suffix Length

0

2

4

6

8

10

P
re

fi
x
 L

e
n
g
th

150

300

450

600

750

900

T
im

e
(m

s)

(d) Average verification time for a s-
mart phone

Fig. 15. Verification efficiency for queries with operator “?”

From Figs. 8-15, we can easily see that all the experimental
processes including the one running in mobile devices can
be completed in less than 33 ms (according to the average
results). Hence, we can conduct that our proposal is efficient
and suitable for the use in resource-constrained devices.

VII. RELATED WORK

The problem of verifiability of search results in searchable
encryption was firstly investigated by Chai and Gong [9]. By

Fig. 16. Number of returned files for queries with operator “?”

using the radix tree, bitmap index, hash function and symmet-
ric key encryption, they proposed the first verifiable searchable
symmetric key encryption (VSSKE) that only support one
keyword search. Since then, many different VSSKE schemes
with different properties have been proposed. Wang et al.
[10] proposed a VSSKE scheme to support fuzzy keyword
search. Zhu et al. [12] extended VSSKE supporting fuzzy
keyword search to the dynamic case by using locality sensitive
hashing and Bloom filter. Later, Zhu et al. [13] proposed
another VSSKE scheme supporting dynamic fuzzy keyword
search with a rigorous security proof. Based on m-best tree
and term similarity tree, Fu et al. [11] proposed a new
VSSKE scheme supporting sematic search. Chase and Shen
[35] proposed a new VSSKE scheme supporting substring
search by applying similar techniques used in our proposal.
However, the client in their scheme cannot verify whether all
valid results are returned. Bost and Fouque [14] proposed a
new VSSKE scheme supporting dynamic keyword search and
forward security. Recently, Ogata and Kurosawa [15] proposed
a more efficient VSSKE scheme with forward security by
using Cuckoo hashing [36], pseudo-random function and sym-
metric key encryption. Very recently, Wang et al. [37] proposed
a new VSSKE scheme supporting conjunctive keyword search
and large-scale database.

Sun et al. [16] and Zheng et al. [17] independently ex-
tended the concept of verifiability in searchable symmetric
key encryption into searchable public key encryption. Two
verifiable searchable public key encryption (VSPKE) schemes
were proposed in [16], [17] respectively. One [16] support-
s conjunctive keyword search, the other [17] supports one
keyword search. Later on, Sun et al. [18] proposed a new
VSPKE scheme to support conjunctive keyword search and
dynamic data. Miao et al. [20] proposed a similar VSPKE
scheme without secure channels. Sun et al. [19] and Miao et
al. [21] further extended the setting of VSPKE by allowing
more data owners (contributors). Recently, Jiang et al. [22]
proposed a new VSPKE scheme with public verifiability.

Nevertheless, all of the above mentioned verifiable search-
able encryption (VSE) scheme cannot support query operator
“OR”, “AND”, “∗” and “?”, simultaneously. To the best of our
knowledge, only a few of the existing VSE schemes [38], [39]

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2924372, IEEE
Transactions on Services Computing

13

hold this property. However, all of these VSE schemes require
many time-consuming operations, such as bilinear maps. From
a practical point of view, it is desired to design an efficient
VSE scheme supporting various queries that contain one or
many of operators “OR”, “AND”, “∗” and “?”, especially for
the use in mobile devices.

Although the basic techniques applied in our proposal also
appear in other schemes, we uniquely integrate them together
to get a new VSSKE scheme that can support operators “OR”,
“AND”, “∗” and “?” without any time-consuming operations
for the first time. Furthermore, confidentiality of the data and
verifiability of the search result in our proposal can also be
well achieved.

VIII. CONCLUSION

In this paper, by using the bitmap index, radix tree,
keyed-hash message authentication code, format preserving
encryption and symmetric key encryption, we have proposed
a new searchable encryption scheme that has the following
properties: 1) Supporting various queries containing one or
many of query operators “OR”, “AND”, “∗” and “?”; 2) ver-
ifiability of search results; 3) no time-consuming operation
required during the whole process. Furthermore, we have also
implemented a prototype of the proposed verifiable SE scheme
and tested its effectiveness and efficiency on the real dataset
from Wikivoyage. The experimental results indicate that our
proposal is efficient and suitable for the use in resource-
constrained devices.

As a future research effort, we plan to refine our verifiable
SE scheme to support dynamic data, queries with “NOT”
operator, and the setting where cloud users are granted with
different access rights. Furthermore, the similarity search over
encrypted data has been studied extensively recently [40]–[42],
we also plan to add the result verifiability into the related
works.

ACKNOWLEDGEMENT

The source code and dataset in this paper can be download-
ed from http://github.com/guanyg/vsse.

REFERENCES

[1] Research and Markets, “Cloud storage market - forecasts from 2017
to 2022,” Online, May 2017, https://www.researchandmarkets.com/
research/lf8wbx/cloud_storage.

[2] Wikipedia, “icloud leaks of celebrity photos,” Online, Aug. 2014, https:
//en.wikipedia.org/wiki/ICloud_leaks_of_celebrity_photos.

[3] S. Khandelwal, “Download: 68 million hacked dropbox accounts are
just a click away!” Online, Oct. 2016, https://thehackernews.com/2016/
10/dropbox-password-hack.html.

[4] M. K. McGee, “Blood test results exposed in cloud
repository,” Online, Oct. 2017, https://www.databreachtoday.com/
blood-test-results-exposed-in-cloud-repository-a-10382.

[5] C. Zuo, S. Sun, J. K. Liu, J. Shao, and J. Pieprzyk, “Dynamic searchable
symmetric encryption schemes supporting range queries with forward
(and backward) security,” in ESORICS, 2018, pp. 228–246.

[6] H. Li, D. Liu, Y. Dai, T. H. Luan, and S. Yu, “Personalized search over
encrypted data with efficient and secure updates in mobile clouds,” IEEE
Trans. Emerging Topics Comput., vol. 6, no. 1, pp. 97–109, 2018.

[7] H. Blodget, “Amazon’s cloud crash disaster permanently destroyed many
customers’ data,” Online, Apr. 2011, http://www.businessinsider.com/
amazon-lost-data-2011-4.

[8] R. Jennings, “Oops: Google ‘loses’ your cloud data
(sky falling; film at 11),” Computerworld, Aug. 2015,
https://www.computerworld.com/article/2973600/cloud-computing/
google-cloud-loses-data-belgium-itbwcw.html.

[9] Q. Chai and G. Gong, “Verifiable symmetric searchable encryption for
semi-honest-but-curious cloud servers,” in IEEE ICC, 2012, pp. 917–
922.

[10] J. Wang, X. Chen, H. Ma, Q. Tang, J. Li, and H. Zhu, “A verifiable
fuzzy keyword search scheme over encrypted data,” Journal of Internet
Services and Information Security, vol. 2, no. 1/2, pp. 49–58, 2012.

[11] Z. Fu, J. Shu, X. Sun, and N. Linge, “Smart cloud search services:
Verifiable keyword-based semantic search over encrypted cloud data,”
IEEE Transactions on Consumer Electronics, vol. 60, no. 4, pp. 762–
770, 2014.

[12] X. Zhu, Q. Liu, and G. Wang, “Verifiable dynamic fuzzy search over
encrypted data in cloud computing,” in ICA3PP, 2015, pp. 655–666.

[13] ——, “A novel verifiable and dynamic fuzzy keyword search
scheme over encrypted data in cloud computing,” in IEEE Trust-
com/BigDataSE/ISPA, 2016, pp. 845–851.

[14] R. Bost and P.-A. Fouque, “Verifiable dynamic symmetric search-
able encryption optimality and forward security,” 2016, http-
s://eprint.iacr.org/2016/062.pdf.

[15] W. Ogata and K. Kurosawa, “Efficient no-dictionary verifiable search-
able symmetric encryption,” in Financial Cryptography and Data Secu-
rity, 2017, pp. 498–516.

[16] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and H. Li,
“Verifiable privacy-preserving multi-keyword text search in the cloud
supporting similarity-based ranking,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 11, pp. 3025–3035, 2014.

[17] Q. Zheng, S. Xu, and G. Ateniese, “VABKS: Verifiable Attribute-based
Keyword Search over Outsourced Encrypted Data,” in IEEE INFOCOM,
2014, pp. 522–530.

[18] W. Sun, X. Liu, W. Lou, Y. T. Hou, and H. Li, “Catch you if you lie to
me: Efficient verifiable conjunctive keyword search over large dynamic
encrypted cloud data,” in IEEE INFOCOM, 2015, pp. 2110–2118.

[19] W. Sun, S. Yu, W. Lou, Y. T. Hou, and H. Li, “Protecting your
right: Verifiable attribute-based keyword search with fine-grained owner-
enforced search authorization in the cloud,” IEEE Transactions on
Parallel and Districuted Systems, vol. 27, no. 4, pp. 1187–1198, 2016.

[20] Y. Miao, J. Ma, F. Wei, Z. Liu, X. A. Wang, and C. Lu, “Vcse:
Verifiable conjunctive keywords search over encrypted data without
secure-channel,” Peer to Peer Network Application, vol. 10, pp. 995–
1007, 2017.

[21] Y. Miao, J. Ma, X. Liu, Q. Jiang, J. Zhang, L. Shen, and Z. Liu, “Vcksm:
Verifiable conjunctive keyword search over mobile e-health cloud in
shared multi-owner settings,” Pervasive and Mobile Computing, vol. 40,
pp. 205–219, 2017.

[22] S. Jiang, X. Zhu, L. Guo, and J. Liu, “Publicly verifiable boolean
query over outsourced encrypted data,” IEEE Transactions on Cloud
Computing, vol. PP, no. 99, pp. 1–1, 2017.

[23] J. Steven, “Internet stats & facts for 2019,” Online, Dec. 2018, https:
//hostingfacts.com/internet-facts-stats/.

[24] C.-Y. Chan and Y. E. Ioannidis, “An efficient bitmap encoding scheme
for selection queries,” in SIGMOD, 1999, pp. 215–226.

[25] D. Knuth, The Art of Computer Programming, Volume 3: (2nd ed.)
Sorting and Searching. Addison Wesley Longman Publishing Co.,
Inc., 1998.

[26] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for
message authentication,” in CRYPTO, 1996, pp. 1–15.

[27] M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers, “Format-
preserving encryption,” in SAC, 2009, pp. 295–312.

[28] J. Li, Z. Liu, X. Chen, F. Xhafa, X. Tan, and D. S. Wong, “L-encdb:
A lightweight framework for privacy-preserving data queries in cloud
computing,” Knowledge-Based Systems, vol. 79, pp. 18–26, 2015.

[29] J. Shao, R. Lu, and X. Lin, “Fine: A fine-grained privacy-preserving
location-based service framework for mobile devices,” in IEEE INFO-
COM, 2014, pp. 244–252.

[30] C. Zuo, J. Shao, J. K. Liu, G. Wei, and Y. Ling, “Fine-grained two-
factor protection mechanism for data sharing in cloud storage,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 1, pp.
186–196, 2018.

[31] J. Black and P. Rogaway, “Ciphers with arbitrary finite domains,” in
CT-RSA, 2002, pp. 114–130.

[32] M. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure on
searchable encryption: Ramification, attack and mitigation,” in NDSS,
2012.

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2924372, IEEE
Transactions on Services Computing

14

[33] C. Liu, L. Zhu, M. Wang, and Y. Tan, “Search pattern leakage in search-
able encryption: Attacks and new construction,” Information Sciences,
vol. 265, pp. 176–188, 2014.

[34] wikivoyage, https://www.wikivoyage.org/, accessed Jan. 2018.
[35] M. Chase and E. Shen, “Substring-searchable symmetric encryption,” in

PoPETs, vol. 2015, no. 2, 2015, pp. 263–281.
[36] R. Pagh and F. F. Rodler, “Cuckoo hashing,” in ESA, 2001, pp. 121–133.
[37] J. Wang, X. Chen, S. Sun, J. K. Liu, M. H. Au, and Z. Zhan, “Towards

efficient verifiable conjunctive keyword search for large encrypted
database,” in ESORICS, 2018, pp. 83–100.

[38] R. Cheng, J. Yan, C. Guan, F. Zhang, and K. Ren, “Verifiable searchable
symmetric encryption from indistinguishability obfuscation,” in AsiaCC-
S, 2015, pp. 621–626.

[39] J. Alderman, C. Janson, K. M. Martin, and S. L. Renwick, “Extended
functionality in verifiable searchable encryption,” in BalkanCryptSec,
2015, pp. 187–205.

[40] X. Yuan, H. Cui, X. Wang, and C. Wang, “Enabling privacy-assured
similarity retrieval over millions of encrypted records,” in ESORICS,
2015, pp. 40–60.

[41] Z. Xia, Y. Zhu, X. Sun, Z. Qin, and K. Ren, “Towards privacy-preserving
content-based image retrieval in cloud computing,” IEEE Trans. Cloud
Computing, vol. 6, no. 1, pp. 276–286, 2018.

[42] H. Cui, X. Yuan, Y. Zheng, and C. Wang, “Towards encrypted in-
network storage services with secure near-duplicate detection,” IEEE
Transactions on Services Computing, 2018.

Jun Shao received the Ph.D. degree from the De-
partment of Computer Science and Engineering at
Shanghai Jiao Tong University, Shanghai, China in
2008. He was a postdoc in the School of Informa-
tion Sciences and Technology at Pennsylvania State
University, USA from 2008 to 2010. He is currently
a professor of the School of Computer Science
and Information Engineering at Zhejiang Gongshang
University, Hangzhou, China. His research interests
include network security and applied cryptography.

Rongxing Lu (S’09-M’11-SM’15) has been an as-
sistant professor at the Faculty of Computer Sci-
ence (FCS), University of New Brunswick (UNB),
Canada, since August 2016. Before that, he worked
as an assistant professor at the School of Electrical
and Electronic Engineering, Nanyang Technological
University (NTU), Singapore from April 2013 to
August 2016. Rongxing Lu worked as a Postdoctoral
Fellow at the University of Waterloo from May
2012 to April 2013. He was awarded the most
prestigious “Governor General’s Gold Medal”, when

he received his PhD degree from the Department of Electrical & Computer
Engineering, University of Waterloo, Canada, in 2012; and won the 8th
IEEE Communications Society (ComSoc) Asia Pacific (AP) Outstanding
Young Researcher Award, in 2013. He is presently a senior member of IEEE
Communications Society. His research interests include applied cryptography,
privacy enhancing technologies, and IoT-Big Data security and privacy. He
has published extensively in his areas of expertise (with citation 14,900+ and
H-index 60 from Google Scholar as of April 2019), and was the recipient of
8 best (student) paper awards from some reputable journals and conferences.
Currently, Dr. Lu serves as the Vice-Chair (Publication) of IEEE ComSoc
CIS-TC (Communications and Information Security Technical Committee).
Dr. Lu is the Winner of 2016-17 Excellence in Teaching Award, FCS, UNB.

Yunguo Guan is a master student of the School of
Computer Science and Information Engineering at
Zhejiang Gongshang University. His research inter-
ests include applied cryptography and game theory.

Guiyi Wei is a professor of the School of Computer
Science and Information Engineering at Zhejiang
Gongshang University. He obtained his Ph.D. in
Dec 2006 from Zhejiang University, where he was
advised by Cheung Kong chair professor Yao Zheng.
His research interests include wireless networks,
mobile computing, cloud computing, social networks
and network security.

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

